These methods extract data from, and attribute new data to, objects of class "lm", "glm", and "mlm" as returned by stats::lm() and stats::glm().

# S3 method for class 'lm'
as_tbl_ord(x)

# S3 method for class 'lm'
recover_rows(x)

# S3 method for class 'lm'
recover_cols(x)

# S3 method for class 'lm'
recover_coord(x)

# S3 method for class 'lm'
recover_aug_rows(x)

# S3 method for class 'lm'
recover_aug_cols(x)

# S3 method for class 'lm'
recover_aug_coord(x)

# S3 method for class 'glm'
recover_aug_rows(x)

# S3 method for class 'mlm'
recover_rows(x)

# S3 method for class 'mlm'
recover_cols(x)

# S3 method for class 'mlm'
recover_coord(x)

# S3 method for class 'mlm'
recover_aug_rows(x)

# S3 method for class 'mlm'
recover_aug_cols(x)

# S3 method for class 'mlm'
recover_aug_coord(x)

Arguments

x

An ordination object.

Value

The recovery generics recover_*() return core model components, distribution of inertia, supplementary elements, and intrinsic metadata; but they require methods for each model class to tell them what these components are.

The generic as_tbl_ord() returns its input wrapped in the 'tbl_ord' class. Its methods determine what model classes it is allowed to wrap. It then provides 'tbl_ord' methods with access to the recoverers and hence to the model components.

See also

Other methods for idiosyncratic techniques: methods-kmeans

Other models from the stats package: methods-cancor, methods-cmds, methods-factanal, methods-kmeans, methods-prcomp, methods-princomp

Examples

# Motor Trend design and performance data
head(mtcars)
#>                    mpg cyl disp  hp drat    wt  qsec vs am gear carb
#> Mazda RX4         21.0   6  160 110 3.90 2.620 16.46  0  1    4    4
#> Mazda RX4 Wag     21.0   6  160 110 3.90 2.875 17.02  0  1    4    4
#> Datsun 710        22.8   4  108  93 3.85 2.320 18.61  1  1    4    1
#> Hornet 4 Drive    21.4   6  258 110 3.08 3.215 19.44  1  0    3    1
#> Hornet Sportabout 18.7   8  360 175 3.15 3.440 17.02  0  0    3    2
#> Valiant           18.1   6  225 105 2.76 3.460 20.22  1  0    3    1
# regression analysis of performance measures on design specifications
mtcars_centered <- scale(mtcars, scale = FALSE)
mtcars_centered %>%
  as.data.frame() %>%
  lm(formula = mpg ~ wt + cyl) %>%
  print() -> mtcars_lm
#> 
#> Call:
#> lm(formula = mpg ~ wt + cyl, data = .)
#> 
#> Coefficients:
#> (Intercept)           wt          cyl  
#>   5.574e-15   -3.191e+00   -1.508e+00  
#> 

# wrap as a 'tbl_ord' object
(mtcars_lm_ord <- as_tbl_ord(mtcars_lm))
#> # A tbl_ord of class 'lm': (32 x 3) x (1 x 3)'
#> # 3 coordinates: (Intercept), wt, cyl
#> # 
#> # Rows: [ 32 x 3 | 0 ]
#>   `(Intercept)`       wt    cyl | 
#>                                 | 
#> 1             1 -0.597   -0.188 | 
#> 2             1 -0.342   -0.188 | 
#> 3             1 -0.897   -2.19  | 
#> 4             1 -0.00225 -0.188 | 
#> 5             1  0.223    1.81  | 
#> 
#> # 
#> # Columns: [ 1 x 3 | 0 ]
#>   `(Intercept)`    wt   cyl | 
#>                             | 
#> 1      5.57e-15 -3.19 -1.51 | 
# augment everything with names, predictors with observation stats
augment_ord(mtcars_lm_ord)
#> # A tbl_ord of class 'lm': (32 x 3) x (1 x 3)'
#> # 3 coordinates: (Intercept), wt, cyl
#> # 
#> # Rows: [ 32 x 3 | 7 ]
#>   `(Intercept)`       wt    cyl |   name      hat sigma  cooksd wt.res
#>                                 |   <chr>   <dbl> <dbl>   <dbl>  <dbl>
#> 1             1 -0.597   -0.188 | 1 Mazda… 0.0548  2.60 5.08e-3 -1.28 
#> 2             1 -0.342   -0.188 | 2 Mazda… 0.0376  2.61 4.44e-4 -0.465
#> 3             1 -0.897   -2.19  | 3 Datsu… 0.0798  2.52 5.68e-2 -3.45 
#> 4             1 -0.00225 -0.188 | 4 Horne… 0.0321  2.61 1.80e-3  1.02 
#> 5             1  0.223    1.81  | 5 Horne… 0.0912  2.58 2.35e-2  2.05 
#> # ℹ 27 more rows
#> # ℹ 2 more variables: .fit <dbl>,
#> #   .se.fit <dbl>
#> # 
#> # Columns: [ 1 x 3 | 1 ]
#>   `(Intercept)`    wt   cyl |   name 
#>                             |   <chr>
#> 1      5.57e-15 -3.19 -1.51 | 1 mpg  
# calculate influences as the squares of weighted residuals
mutate_rows(augment_ord(mtcars_lm_ord), influence = wt.res^2)
#> # A tbl_ord of class 'lm': (32 x 3) x (1 x 3)'
#> # 3 coordinates: (Intercept), wt, cyl
#> # 
#> # Rows: [ 32 x 3 | 8 ]
#>   `(Intercept)`       wt    cyl |   name      hat sigma  cooksd wt.res
#>                                 |   <chr>   <dbl> <dbl>   <dbl>  <dbl>
#> 1             1 -0.597   -0.188 | 1 Mazda… 0.0548  2.60 5.08e-3 -1.28 
#> 2             1 -0.342   -0.188 | 2 Mazda… 0.0376  2.61 4.44e-4 -0.465
#> 3             1 -0.897   -2.19  | 3 Datsu… 0.0798  2.52 5.68e-2 -3.45 
#> 4             1 -0.00225 -0.188 | 4 Horne… 0.0321  2.61 1.80e-3  1.02 
#> 5             1  0.223    1.81  | 5 Horne… 0.0912  2.58 2.35e-2  2.05 
#> # ℹ 27 more rows
#> # ℹ 3 more variables: .fit <dbl>,
#> #   .se.fit <dbl>, influence <dbl>
#> # 
#> # Columns: [ 1 x 3 | 1 ]
#>   `(Intercept)`    wt   cyl |   name 
#>                             |   <chr>
#> 1      5.57e-15 -3.19 -1.51 | 1 mpg  

# regression biplot with performance isolines
mtcars_lm_ord %>%
  augment_ord() %>%
  mutate_cols(center = attr(mtcars_centered, "scaled:center")[name]) %>%
  mutate_rows(influence = wt.res^2) %T>% print() %>%
  ggbiplot(aes(x = wt, y = cyl, intercept = `(Intercept)`)) +
  #theme_biplot() +
  geom_origin(marker = "circle", radius = unit(0.02, "snpc")) +
  geom_rows_point(aes(color = influence)) +
  geom_cols_vector() +
  geom_cols_isoline(aes(center = center), by = .5, hjust = -.1) +
  ggtitle(
    "Weight isolines with data colored by importance",
    "Regressing gas mileage onto weight and number of cylinders"
  )
#> # A tbl_ord of class 'lm': (32 x 3) x (1 x 3)'
#> # 3 coordinates: (Intercept), wt, cyl
#> # 
#> # Rows: [ 32 x 3 | 8 ]
#>   `(Intercept)`       wt    cyl |   name      hat sigma  cooksd wt.res
#>                                 |   <chr>   <dbl> <dbl>   <dbl>  <dbl>
#> 1             1 -0.597   -0.188 | 1 Mazda… 0.0548  2.60 5.08e-3 -1.28 
#> 2             1 -0.342   -0.188 | 2 Mazda… 0.0376  2.61 4.44e-4 -0.465
#> 3             1 -0.897   -2.19  | 3 Datsu… 0.0798  2.52 5.68e-2 -3.45 
#> 4             1 -0.00225 -0.188 | 4 Horne… 0.0321  2.61 1.80e-3  1.02 
#> 5             1  0.223    1.81  | 5 Horne… 0.0912  2.58 2.35e-2  2.05 
#> # ℹ 27 more rows
#> # ℹ 3 more variables: .fit <dbl>,
#> #   .se.fit <dbl>, influence <dbl>
#> # 
#> # Columns: [ 1 x 3 | 2 ]
#>   `(Intercept)`    wt   cyl |   name  center
#>                             |   <chr>  <dbl>
#> 1      5.57e-15 -3.19 -1.51 | 1 mpg     20.1