geom_origin()
renders a symbol, either a set of crosshairs or
a circle, at the origin. geom_unit_circle()
renders the unit circle,
centered at the origin with radius 1.
geom_origin(
mapping = NULL,
data = NULL,
marker = "crosshairs",
radius = unit(0.04, "snpc"),
...,
na.rm = FALSE,
show.legend = NA,
inherit.aes = FALSE
)
geom_unit_circle(
mapping = NULL,
data = NULL,
segments = 60,
scale.factor = 1,
...,
na.rm = FALSE,
show.legend = NA,
inherit.aes = FALSE
)
Set of aesthetic mappings created by aes()
. If specified and
inherit.aes = TRUE
(the default), it is combined with the default mapping
at the top level of the plot. You must supply mapping
if there is no plot
mapping.
The data to be displayed in this layer. There are three options:
If NULL
, the default, the data is inherited from the plot
data as specified in the call to ggplot()
.
A data.frame
, or other object, will override the plot
data. All objects will be fortified to produce a data frame. See
fortify()
for which variables will be created.
A function
will be called with a single argument,
the plot data. The return value must be a data.frame
, and
will be used as the layer data. A function
can be created
from a formula
(e.g. ~ head(.x, 10)
).
The symbol to be drawn at the origin; matched to "crosshairs"
or "circle"
.
A grid::unit()
object that sets the radius of the crosshairs
or of the circle.
Additional arguments passed to ggplot2::layer()
.
Passed to ggplot2::layer()
.
logical. Should this layer be included in the legends?
NA
, the default, includes if any aesthetics are mapped.
FALSE
never includes, and TRUE
always includes.
It can also be a named logical vector to finely select the aesthetics to
display.
If FALSE
, overrides the default aesthetics,
rather than combining with them. This is most useful for helper functions
that define both data and aesthetics and shouldn't inherit behaviour from
the default plot specification, e.g. borders()
.
The number of segments to be used in drawing the circle.
The circle radius; should remain at its default value 1
or passed the same value as ggbiplot()
. (This is an imperfect fix that
may be changed in a future version.)
A ggproto layer.
ggbiplot()
uses ggplot2::fortify()
internally to produce a single data
frame with a .matrix
column distinguishing the subjects ("rows"
) and
variables ("cols"
). The stat layers stat_rows()
and stat_cols()
simply
filter the data frame to one of these two.
The geom layers geom_rows_*()
and geom_cols_*()
call the corresponding
stat in order to render plot elements for the corresponding factor matrix.
geom_dims_*()
selects a default matrix based on common practice, e.g.
points for rows and arrows for columns.
geom_origin()
accepts no aesthetics.
geom_unit_circle()
understands the following aesthetics (none required):
alpha
colour
linetype
size
Other geom layers:
geom_axis()
,
geom_interpolation()
,
geom_isoline()
,
geom_lineranges()
,
geom_rule()
,
geom_text_radiate()
,
geom_vector()
# principal components analysis of glass composition measurements
glass[, c(5L, 7L, 8L, 10L, 11L)] %>%
princomp(cor = TRUE) %>%
as_tbl_ord() %>%
cbind_rows(site = glass$Site, form = glass$Form) %>%
augment_ord() %>%
print() -> glass_pca
#> # A tbl_ord of class 'princomp': (68 x 5) x (5 x 5)'
#> # 5 coordinates: Comp.1, Comp.2, ..., Comp.5
#> #
#> # Rows (principal): [ 68 x 5 | 3 ]
#> Comp.1 Comp.2 Comp.3 ... | .element site form
#> | <chr> <chr> <chr>
#> 1 2.01 0.585 0.940 | 1 score Bet Eli'ezer Chunk
#> 2 2.55 0.513 -1.71 ... | 2 score Bet Eli'ezer Chunk
#> 3 1.64 0.0977 0.131 | 3 score Bet Eli'ezer Chunk
#> 4 1.07 0.00734 1.20 | 4 score Bet Eli'ezer Chunk
#> 5 1.07 0.00573 1.31 | 5 score Bet Eli'ezer Chunk
#> # ℹ 63 more rows
#> #
#> # Columns (standard): [ 5 x 5 | 4 ]
#> Comp.1 Comp.2 Comp.3 ... | name center scale .element
#> | <chr> <dbl> <dbl> <chr>
#> 1 0.476 0.383 0.388 | 1 SiO2 71.7 3.16 active
#> 2 0.488 -0.492 -0.0574 ... | 2 Al2O3 2.64 0.956 active
#> 3 0.383 0.234 -0.873 | 3 FeO 0.442 0.159 active
#> 4 -0.425 0.580 -0.153 | 4 MgO 1.15 0.913 active
#> 5 -0.456 -0.469 -0.247 | 5 CaO 8.18 1.36 active
# note that column standard coordinates are unit vectors
rowSums(get_cols(glass_pca) ^ 2)
#> SiO2 Al2O3 FeO MgO CaO
#> 1 1 1 1 1
# plot column standard coordinates with a unit circle underlaid
glass_pca %>%
ggbiplot(aes(label = name), sec.axes = "cols") +
theme_biplot() +
geom_rows_point(aes(color = site, shape = form), elements = "score") +
geom_unit_circle(alpha = .5, scale.factor = 3) +
geom_cols_vector()