These methods extract data from, and attribute new data to, objects of class "princomp" as returned by stats::princomp().

# S3 method for princomp
as_tbl_ord(x)

# S3 method for princomp
recover_rows(x)

# S3 method for princomp
recover_cols(x)

# S3 method for princomp
recover_inertia(x)

# S3 method for princomp
recover_coord(x)

# S3 method for princomp
recover_conference(x)

# S3 method for princomp
recover_aug_rows(x)

# S3 method for princomp
recover_aug_cols(x)

# S3 method for princomp
recover_aug_coord(x)

Arguments

x

An ordination object.

Value

The recovery generics recover_*() return core model components, distribution of inertia, supplementary elements, and intrinsic metadata; but they require methods for each model class to tell them what these components are.

The generic as_tbl_ord() returns its input wrapped in the 'tbl_ord' class. Its methods determine what model classes it is allowed to wrap. It then provides 'tbl_ord' methods with access to the recoverers and hence to the model components.

See also

Other methods for singular value decomposition-based techniques: methods-cancor, methods-correspondence, methods-lda, methods-lra, methods-mca, methods-prcomp, methods-svd

Other models from the stats package: methods-cancor, methods-cmds, methods-factanal, methods-kmeans, methods-lm, methods-prcomp

Author

Emily Paul

Examples

# data frame of Anderson iris species measurements
class(iris)
#> [1] "data.frame"
head(iris)
#>   Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#> 1          5.1         3.5          1.4         0.2  setosa
#> 2          4.9         3.0          1.4         0.2  setosa
#> 3          4.7         3.2          1.3         0.2  setosa
#> 4          4.6         3.1          1.5         0.2  setosa
#> 5          5.0         3.6          1.4         0.2  setosa
#> 6          5.4         3.9          1.7         0.4  setosa

# compute unscaled row-principal components of scaled measurements
iris[, -5] %>%
  princomp() %>%
  as_tbl_ord() %>%
  print() -> iris_pca
#> # A tbl_ord of class 'princomp': (150 x 4) x (4 x 4)'
#> # 4 coordinates: Comp.1, Comp.2, ..., Comp.4
#> # 
#> # Rows (principal): [ 150 x 4 | 0 ]
#>   Comp.1 Comp.2  Comp.3 ... | 
#>                             | 
#> 1  -2.68  0.319  0.0279     | 
#> 2  -2.71 -0.177  0.210  ... | 
#> 3  -2.89 -0.145 -0.0179     | 
#> 4  -2.75 -0.318 -0.0316     | 
#> 5  -2.73  0.327 -0.0901     | 
#> 
#> # 
#> # Columns (standard): [ 4 x 4 | 0 ]
#>    Comp.1  Comp.2  Comp.3 ... | 
#>                               | 
#> 1  0.361   0.657   0.582      | 
#> 2 -0.0845  0.730  -0.598  ... | 
#> 3  0.857  -0.173  -0.0762     | 
#> 4  0.358  -0.0755 -0.546      | 

# recover observation principal coordinates and measurement standard coordinates
head(get_rows(iris_pca))
#>         Comp.1     Comp.2      Comp.3       Comp.4
#> [1,] -2.684126  0.3193972  0.02791483  0.002262437
#> [2,] -2.714142 -0.1770012  0.21046427  0.099026550
#> [3,] -2.888991 -0.1449494 -0.01790026  0.019968390
#> [4,] -2.745343 -0.3182990 -0.03155937 -0.075575817
#> [5,] -2.728717  0.3267545 -0.09007924 -0.061258593
#> [6,] -2.280860  0.7413304 -0.16867766 -0.024200858
get_cols(iris_pca)
#>                   Comp.1      Comp.2      Comp.3     Comp.4
#> Sepal.Length  0.36138659  0.65658877  0.58202985  0.3154872
#> Sepal.Width  -0.08452251  0.73016143 -0.59791083 -0.3197231
#> Petal.Length  0.85667061 -0.17337266 -0.07623608 -0.4798390
#> Petal.Width   0.35828920 -0.07548102 -0.54583143  0.7536574

# augment measurement coordinates with names and scaling parameters
(iris_pca <- augment_ord(iris_pca))
#> # A tbl_ord of class 'princomp': (150 x 4) x (4 x 4)'
#> # 4 coordinates: Comp.1, Comp.2, ..., Comp.4
#> # 
#> # Rows (principal): [ 150 x 4 | 0 ]
#>   Comp.1 Comp.2  Comp.3 ... | 
#>                             | 
#> 1  -2.68  0.319  0.0279     | 
#> 2  -2.71 -0.177  0.210  ... | 
#> 3  -2.89 -0.145 -0.0179     | 
#> 4  -2.75 -0.318 -0.0316     | 
#> 5  -2.73  0.327 -0.0901     | 
#> 
#> # 
#> # Columns (standard): [ 4 x 4 | 3 ]
#>    Comp.1  Comp.2  Comp.3 ... |   name         center scale
#>                               |   <chr>         <dbl> <dbl>
#> 1  0.361   0.657   0.582      | 1 Sepal.Length   5.84     1
#> 2 -0.0845  0.730  -0.598  ... | 2 Sepal.Width    3.06     1
#> 3  0.857  -0.173  -0.0762     | 3 Petal.Length   3.76     1
#> 4  0.358  -0.0755 -0.546      | 4 Petal.Width    1.20     1