This vignette introduces the goals and functionality of the ordr package. Users should have some familiarity with the class of ordination models powered by singular value decomposition, such as principal components analysis, correspondence analysis, and linear discriminant analysis, and with the biplot statistical graphic used to visualize these models. Users should also be familiar with the tidyverse R package collection for data science and parts of the tidymodels collection for statistical modeling, most notably tibble, dplyr, broom, and ggplot2.

Briefly, ordr incorporates ordination models into a “tidy” workflow. Specifically, for fitted ordination models of a variety of classes, users can

  • augment the model with row- or column-level diagnostics and annotations,
  • summarize the model or its components as tidy data frames, and
  • produce biplots of the model using a layered grammar of graphics.

As an example, this vignette performs a correspondence analysis (CA) of the HairEyeColor data set installed with R, using the fitting engine corresp() provided by the MASS package and its base plotting methods, then showcases the more flexible and elegant methods provided by ordr. While some techniques specific to CA are not as natural in ordr, most can be reproduced through the principled use of general steps.

data(HairEyeColor)
library(MASS)
library(ordr)
#> Loading required package: ggplot2

the hair and eye color data

We begin with an inspection of the data using base R. For more information about the data set, call help(HairEyeColor).

print(HairEyeColor)
#> , , Sex = Male
#> 
#>        Eye
#> Hair    Brown Blue Hazel Green
#>   Black    32   11    10     3
#>   Brown    53   50    25    15
#>   Red      10   10     7     7
#>   Blond     3   30     5     8
#> 
#> , , Sex = Female
#> 
#>        Eye
#> Hair    Brown Blue Hazel Green
#>   Black    36    9     5     2
#>   Brown    66   34    29    14
#>   Red      16    7     7     7
#>   Blond     4   64     5     8
plot(HairEyeColor)

The data were collected by students in one of Ronald Snee’s statistics courses.1 They consist of the hair color and eye color, each binned into four groups, of 592 subjects. The data are also stratified by sex, forming a 3-way array. The (default) mosaic plot reveals only subtle differences by sex, so we lose little by flattening the array into a \(4 \times 4\) matrix. The resulting count table is suitable for correspondence analysis, and we fit this model next.

correspondence analysis using MASS

The implementation MASS::corresp() returns an object of class ‘correspondence’. In addition to the information included in its print() method, we can use the canonical correlations to calculate the proportion of variance along each dimension:

haireye <- apply(HairEyeColor, c(1L, 2L), sum)
haireye_ca <- corresp(haireye, nf = 3L)
print(haireye_ca)
#> First canonical correlation(s): 0.45691646 0.14908593 0.05097489 
#> 
#>  Hair scores:
#>             [,1]       [,2]       [,3]
#> Black -1.1042772  1.4409170 -1.0889497
#> Brown -0.3244635 -0.2191109  0.9574152
#> Red   -0.2834725 -2.1440145 -1.6312184
#> Blond  1.8282287  0.4667063 -0.3180920
#> 
#>  Eye scores:
#>             [,1]       [,2]        [,3]
#> Brown -1.0771283  0.5924202 -0.42395984
#> Blue   1.1980612  0.5564193  0.09238682
#> Hazel -0.4652862 -1.1227826  1.97191769
#> Green  0.3540108 -2.2741218 -1.71844295
# proportion of variance in each dimension
haireye_ca$cor^2 / sum(haireye_ca$cor^2)
#> [1] 0.89372732 0.09514911 0.01112356

The variation in the table, in terms of the \(\chi^2\) distances between the distributions of hair color among people with the same eye color (or, equivalently, vice-versa), lies largely (\(89\%\)) along a single dimension, with the remaining variation largely (\(9.5\%\)) along a single orthogonal dimension. The first dimension best distinguishes between subjects with black hair and brown eyes from those with blond hair and blue eyes. Subjects with brown and red hair, or with hazel and green eyes, lie between these extremes.

The second dimension distinguishes subjects with black or blond hair, and with brown or blue eyes, from those with brown or red hair, and with hazel or green eyes. Subjects with red hair and green eyes are especially distinguished along this dimension. This disrupts the impression from the first dimension alone that subjects lie along a spectrum from black hair–brown eyes to blond hair–blue eyes, which may accurately include an intermediate phenotype (brown hair–hazel eyes), and reveals a phenotype (red hair–green eyes) that diverges from this spectrum.

As an exercise, we can recover the row and column standard coordinates returned by corresp() from direct computations, e.g. following the Wikipedia article on correspondence analysis, starting from the data matrix (count table) \(X\) with total count \(n = 1^\top X 1\):

  1. The correspondence matrix (the matrix of relative frequencies) \(P = \frac{1}{n} X\)
  2. The row and column weights \(r = \frac{1}{n} X 1\) and \(c = \frac{1}{n} 1^\top X\)
  3. The diagonals of inverse weights \(D_r = \operatorname{diag}(r)\) and \(D_c = \operatorname{diag}(c)\)
  4. The matrix of standardized residuals \(S = D_r (P - rc) D_c\)
  5. The singular value decomposition \(S = U \Sigma V^\top\)
  6. The row and column standard coordinates \(F = D_r U\) and \(G = D_c V\)
# correspondence matrix (matrix of relative frequencies)
(haireye_p <- haireye / sum(haireye))
#>        Eye
#> Hair         Brown       Blue      Hazel       Green
#>   Black 0.11486486 0.03378378 0.02533784 0.008445946
#>   Brown 0.20101351 0.14189189 0.09121622 0.048986486
#>   Red   0.04391892 0.02871622 0.02364865 0.023648649
#>   Blond 0.01182432 0.15878378 0.01689189 0.027027027
# row and column weights
(haireye_r <- rowSums(haireye) / sum(haireye))
#>     Black     Brown       Red     Blond 
#> 0.1824324 0.4831081 0.1199324 0.2145270
(haireye_c <- colSums(haireye) / sum(haireye))
#>     Brown      Blue     Hazel     Green 
#> 0.3716216 0.3631757 0.1570946 0.1081081
# matrix of standardized residuals
(haireye_s <-
    diag(1 / sqrt(haireye_r)) %*%
    (haireye_p - haireye_r %*% t(haireye_c)) %*%
    diag(1 / sqrt(haireye_c)))
#>              [,1]        [,2]        [,3]        [,4]
#> [1,]  0.180773066 -0.12615064 -0.01961905 -0.08029590
#> [2,]  0.050694815 -0.08012300  0.05561963 -0.01418351
#> [3,] -0.003081574 -0.07110772  0.03502737  0.09381990
#> [4,] -0.240474512  0.28973637 -0.09156384  0.02518174
# singular value decomposition
haireye_svd <- svd(haireye_s)
# row and column standard coordinates
diag(1 / sqrt(haireye_r)) %*% haireye_svd$u[, 1:3]
#>            [,1]       [,2]       [,3]
#> [1,] -1.1042772  1.4409170 -1.0889497
#> [2,] -0.3244635 -0.2191109  0.9574152
#> [3,] -0.2834725 -2.1440145 -1.6312184
#> [4,]  1.8282287  0.4667063 -0.3180920
diag(1 / sqrt(haireye_c)) %*% haireye_svd$v[, 1:3]
#>            [,1]       [,2]        [,3]
#> [1,] -1.0771283  0.5924202 -0.42395984
#> [2,]  1.1980612  0.5564193  0.09238682
#> [3,] -0.4652862 -1.1227826  1.97191769
#> [4,]  0.3540108 -2.2741218 -1.71844295

We can generate a biplot display via the biplot() method for the ‘correspondence’ class, also provided by MASS:

biplot(
  haireye_ca, type = "symmetric", cex = .8,
  main = "Correspondence analysis of subjects' hair & eye colors"
)

This symmetric biplot evenly distributes the inertia between the rows and columns. Distances between points in the same matrix factor do not approximate their \(\chi^2\) distances, but inner products between row and column points approximate their standardized residuals. The row and column profile markers are resized to represent the masses of the groups.

ordr methods for CA models

ordr provides a new class, ‘tbl_ord’, that wraps ordination objects like those of class ‘prcomp’ without directly modifying them. (The original model can be recovered with un_tbl_ord().)

(haireye_ca_ord <- as_tbl_ord(haireye_ca))
#> # A tbl_ord of class 'correspondence': (4 x 3) x (4 x 3)'
#> # 3 coordinates: Can1, Can2, Can3
#> # 
#> # Rows (standard): [ 4 x 3 | 0 ]
#>     Can1   Can2   Can3 | 
#>                        | 
#> 1 -1.10   1.44  -1.09  | 
#> 2 -0.324 -0.219  0.957 | 
#> 3 -0.283 -2.14  -1.63  | 
#> 4  1.83   0.467 -0.318 | 
#> # 
#> # Columns (standard): [ 4 x 3 | 0 ]
#>     Can1   Can2    Can3 | 
#>                         | 
#> 1 -1.08   0.592 -0.424  | 
#> 2  1.20   0.556  0.0924 | 
#> 3 -0.465 -1.12   1.97   | 
#> 4  0.354 -2.27  -1.72   |

The print() method for ‘tbl_ord’ is based on that of tibbles. It prints two tibbles, like that for the ‘tbl_graph’ class of tidygraph, one for each matrix factor.

The header reminds us of the dimensions of the matrix factors and how the inertia is distributed. In ‘correspondence’ objects, by default both row and column profiles are in standard coordinates: \(D_r F\) and \(D_c G\), but these can be reassigned to any pair of proportions \(D_r S {D_c}^\top = (D_r U \Sigma^{p}) (D_c V \Sigma^{q})^\top\), even if \(p + q \neq 1\). By assigning "symmetric" inertia, we distribute half of the inertia to each matrix factor:

get_conference(haireye_ca_ord)
#> [1] 0 0
confer_inertia(haireye_ca_ord, c(.25, .75))
#> # A tbl_ord of class 'correspondence': (4 x 3) x (4 x 3)'
#> # 3 coordinates: Can1, Can2, Can3
#> # 
#> # Rows (25% inertia): [ 4 x 3 | 0 ]
#>     Can1   Can2   Can3 | 
#>                        | 
#> 1 -0.908  0.895 -0.517 | 
#> 2 -0.267 -0.136  0.455 | 
#> 3 -0.233 -1.33  -0.775 | 
#> 4  1.50   0.290 -0.151 | 
#> # 
#> # Columns (75% inertia): [ 4 x 3 | 0 ]
#>     Can1   Can2     Can3 | 
#>                          | 
#> 1 -0.599  0.142 -0.0455  | 
#> 2  0.666  0.133  0.00991 | 
#> 3 -0.259 -0.269  0.212   | 
#> 4  0.197 -0.546 -0.184   |
confer_inertia(haireye_ca_ord, c(1, 1))
#> Warning in confer_inertia(haireye_ca_ord, c(1, 1)): Inertia is not balanced.
#> # A tbl_ord of class 'correspondence': (4 x 3) x (4 x 3)'
#> # 3 coordinates: Can1, Can2, Can3
#> # 
#> # Rows (principal): [ 4 x 3 | 0 ]
#>     Can1    Can2    Can3 | 
#>                          | 
#> 1 -0.505  0.215  -0.0555 | 
#> 2 -0.148 -0.0327  0.0488 | 
#> 3 -0.130 -0.320  -0.0832 | 
#> 4  0.835  0.0696 -0.0162 | 
#> # 
#> # Columns (principal): [ 4 x 3 | 0 ]
#>     Can1    Can2     Can3 | 
#>                           | 
#> 1 -0.492  0.0883 -0.0216  | 
#> 2  0.547  0.0830  0.00471 | 
#> 3 -0.213 -0.167   0.101   | 
#> 4  0.162 -0.339  -0.0876  |
(haireye_ca_ord <- confer_inertia(haireye_ca_ord, "symmetric"))
#> # A tbl_ord of class 'correspondence': (4 x 3) x (4 x 3)'
#> # 3 coordinates: Can1, Can2, Can3
#> # 
#> # Rows (symmetric): [ 4 x 3 | 0 ]
#>     Can1    Can2    Can3 | 
#>                          | 
#> 1 -0.746  0.556  -0.246  | 
#> 2 -0.219 -0.0846  0.216  | 
#> 3 -0.192 -0.828  -0.368  | 
#> 4  1.24   0.180  -0.0718 | 
#> # 
#> # Columns (symmetric): [ 4 x 3 | 0 ]
#>     Can1   Can2    Can3 | 
#>                         | 
#> 1 -0.728  0.229 -0.0957 | 
#> 2  0.810  0.215  0.0209 | 
#> 3 -0.315 -0.434  0.445  | 
#> 4  0.239 -0.878 -0.388  |

broom::glance() returns a single-row tibble summary of a model object. It was designed for analysis pipelines involving multiple models (e.g. model selection), to facilitate summaries of multiple models at once. ‘tbl_ord’ objects wrap a potentially huge variety of models, for which only a few summary statistics will usually be useful. This method includes the rank of the matrix factorization; the proportion of inertia/variance in the first two dimensions, which characterize the fidelity of a biplot to the complete data; and the original object class.

glance(haireye_ca_ord)
#> # A tibble: 1 × 7
#>    rank n.row n.col inertia prop.var.1 prop.var.2 class         
#>   <int> <int> <int>   <dbl>      <dbl>      <dbl> <chr>         
#> 1     3     4     4   0.234      0.894     0.0951 correspondence

Analogous to broom::augment(), this tbl_ord-specific function preserves the ‘tbl_ord’ class but augments the row and column tibbles with any metadata or diagnostics found in the model object. Vertical bars separate the coordinate matrices from annotations.

augment_ord(haireye_ca_ord)
#> # A tbl_ord of class 'correspondence': (4 x 3) x (4 x 3)'
#> # 3 coordinates: Can1, Can2, Can3
#> # 
#> # Rows (symmetric): [ 4 x 3 | 1 ]
#>     Can1    Can2    Can3 |   name 
#>                          |   <chr>
#> 1 -0.746  0.556  -0.246  | 1 Black
#> 2 -0.219 -0.0846  0.216  | 2 Brown
#> 3 -0.192 -0.828  -0.368  | 3 Red  
#> 4  1.24   0.180  -0.0718 | 4 Blond
#> # 
#> # Columns (symmetric): [ 4 x 3 | 1 ]
#>     Can1   Can2    Can3 |   name 
#>                         |   <chr>
#> 1 -0.728  0.229 -0.0957 | 1 Brown
#> 2  0.810  0.215  0.0209 | 2 Blue 
#> 3 -0.315 -0.434  0.445  | 3 Hazel
#> 4  0.239 -0.878 -0.388  | 4 Green

Additional row- and column-level variables can also be augmented and manipulated using a handful of dplyr-like verbs, each specific to the matrix factor being affected (rows or cols). Each tibble is split between the shared coordinates on the left and any additional annotation columns on the right.

The broom::tidy() method for tbl_ords returns a tibble with one row per artificial coordinate.2 In CA, these are variably called dimensions or components. The ‘correspondence’ object contains a $cor vector of canonical correlations, which is included in the result; other coordinate-level attributes vary by model object class.

tidy(haireye_ca_ord)
#> # A tibble: 3 × 5
#>   name     cor inertia prop_var quality
#>   <fct>  <dbl>   <dbl>    <dbl>   <dbl>
#> 1 Can1  0.457  0.209     0.894    0.894
#> 2 Can2  0.149  0.0222    0.0951   0.989
#> 3 Can3  0.0510 0.00260   0.0111   1

The .inertia and .prop_var fields are calculated from the singular values or eigenvalues contained in the ordination object and always appear when defined. This means that tidy() prepares any ordination object derived from such a decomposition for a scree plot with ggplot2::ggplot():

ggplot(tidy(haireye_ca_ord), aes(x = name, y = inertia)) +
  geom_col() +
  labs(x = "Component", y = "Inertia") +
  ggtitle("Correspondence analysis of subjects' hair & eye colors",
          "Decomposition of inertia")

While ggplot2::fortify() may rarely be called directly, is plays a special role in ordr by converting a ‘tbl_ord’ object to a ‘tbl_df’ object. To do this, the fortifier row-binds the two matrix factor tibbles and adds an additional .matrix column to remember which was which:

fortify(haireye_ca_ord)
#> # A tibble: 8 × 5
#>     Can1    Can2    Can3 .element .matrix
#>    <dbl>   <dbl>   <dbl> <chr>    <chr>  
#> 1 -0.746  0.556  -0.246  active   rows   
#> 2 -0.219 -0.0846  0.216  active   rows   
#> 3 -0.192 -0.828  -0.368  active   rows   
#> 4  1.24   0.180  -0.0718 active   rows   
#> 5 -0.728  0.229  -0.0957 active   cols   
#> 6  0.810  0.215   0.0209 active   cols   
#> 7 -0.315 -0.434   0.445  active   cols   
#> 8  0.239 -0.878  -0.388  active   cols

This fortifier will also preserve any row and column annotations, so it can be composed with augment_ord() or with the row- and column-specific verbs. NAs are introduced when an annotation is present for one matrix factor but not the other. (The .element column becomes important when a model produces supplementary as well as active elements.)

The .matrix column also plays a key role in ggbiplot(): The row- and column-specific ploy layers, which take the form geom_rows_*() or stat_cols_*(), for example, use this column to subset the data internally. This enables the layered grammar of graphics of ggplot2 to apply separately to the two matrix factors and their annotation. Though note that it can also be applied to the entire fortified data frame using conventional plot layers, as below when the .matrix column is used to distinguish the colors and shapes of the row and column profile markers:

haireye_ca_ord %>%
  augment_ord() %>%
  fortify() %>%
  transform(feature = ifelse(.matrix == "rows", "Hair", "Eye")) %>%
  ggbiplot(aes(color = feature, shape = feature, label = name), clip = "off") +
  theme_biplot() +
  geom_origin() +
  geom_rows_point() +
  geom_cols_point() +
  geom_rows_text(vjust = -1, hjust = 0, size = 3) +
  geom_cols_text(vjust = -1, hjust = 0, size = 3) +
  scale_color_brewer(type = "qual", palette = "Dark2") +
  scale_size_area() +
  ggtitle("Correspondence analysis of subjects' hair & eye colors",
          "Symmetric biplot")

Note a few conveniences:

  • The position aesthetics are assumed to be the first and second artificial coordinates, unless otherwise specified. Biplots can also be specified by setting the x and y aesthetics to integers, which are converted to the corresponding artificial coordinates.
  • By default, the aspect ratio is set to 1. This is essential for biplots, which rely on distances between markers and angles between vectors to convey information.
  • The partial theme theme_biplot() removes several plot elements that are usually not important to biplots, most notably gridlines, while retaining other properties of the current theme.
  • The layer geom_origin() is one of two shortcuts for plotting elements commonly used in biplots, the other being geom_unit_circle().

session info

sessioninfo::session_info()
#> ─ Session info ───────────────────────────────────────────────────────────────
#>  setting  value
#>  version  R version 4.1.1 (2021-08-10)
#>  os       macOS Big Sur 10.16
#>  system   x86_64, darwin17.0
#>  ui       X11
#>  language en
#>  collate  en_US.UTF-8
#>  ctype    en_US.UTF-8
#>  tz       America/New_York
#>  date     2022-10-21
#>  pandoc   2.18 @ /Applications/RStudio.app/Contents/MacOS/quarto/bin/tools/ (via rmarkdown)
#> 
#> ─ Packages ───────────────────────────────────────────────────────────────────
#>  package      * version    date (UTC) lib source
#>  assertthat     0.2.1      2019-03-21 [2] CRAN (R 4.1.0)
#>  bslib          0.4.0      2022-07-16 [2] CRAN (R 4.1.2)
#>  cachem         1.0.6      2021-08-19 [2] CRAN (R 4.1.0)
#>  cli            3.4.1      2022-09-23 [2] CRAN (R 4.1.2)
#>  colorspace     2.0-3      2022-02-21 [2] CRAN (R 4.1.2)
#>  DBI            1.1.3      2022-06-18 [2] CRAN (R 4.1.2)
#>  desc           1.4.2      2022-09-08 [2] CRAN (R 4.1.2)
#>  digest         0.6.30     2022-10-18 [2] CRAN (R 4.1.2)
#>  dplyr          1.0.10     2022-09-01 [2] CRAN (R 4.1.2)
#>  evaluate       0.17       2022-10-07 [2] CRAN (R 4.1.2)
#>  fansi          1.0.3      2022-03-24 [2] CRAN (R 4.1.2)
#>  farver         2.1.1      2022-07-06 [2] CRAN (R 4.1.2)
#>  fastmap        1.1.0      2021-01-25 [2] CRAN (R 4.1.0)
#>  fs             1.5.2      2021-12-08 [2] CRAN (R 4.1.0)
#>  generics       0.1.3      2022-07-05 [2] CRAN (R 4.1.2)
#>  ggplot2      * 3.3.6.9000 2022-10-20 [2] Github (tidyverse/ggplot2@a58b48c)
#>  ggrepel        0.9.1.9999 2022-10-20 [2] Github (slowkow/ggrepel@3444c71)
#>  glue           1.6.2      2022-02-24 [2] CRAN (R 4.1.2)
#>  gtable         0.3.1      2022-09-01 [2] CRAN (R 4.1.2)
#>  highr          0.9        2021-04-16 [2] CRAN (R 4.1.0)
#>  htmltools      0.5.3      2022-07-18 [2] CRAN (R 4.1.2)
#>  jquerylib      0.1.4      2021-04-26 [2] CRAN (R 4.1.0)
#>  jsonlite       1.8.2      2022-10-02 [2] CRAN (R 4.1.2)
#>  knitr          1.40       2022-08-24 [2] CRAN (R 4.1.2)
#>  labeling       0.4.2      2020-10-20 [2] CRAN (R 4.1.0)
#>  lifecycle      1.0.3.9000 2022-10-20 [2] Github (r-lib/lifecycle@80a1e52)
#>  magrittr       2.0.3      2022-03-30 [2] CRAN (R 4.1.2)
#>  MASS         * 7.3-54     2021-05-03 [2] CRAN (R 4.1.1)
#>  memoise        2.0.1      2021-11-26 [2] CRAN (R 4.1.0)
#>  munsell        0.5.0      2018-06-12 [2] CRAN (R 4.1.0)
#>  ordr         * 0.1.1      2022-10-21 [1] local
#>  pillar         1.8.1      2022-08-19 [2] CRAN (R 4.1.2)
#>  pkgconfig      2.0.3      2019-09-22 [2] CRAN (R 4.1.0)
#>  pkgdown        2.0.6      2022-07-16 [2] CRAN (R 4.1.2)
#>  purrr          0.3.5      2022-10-06 [2] CRAN (R 4.1.2)
#>  R6             2.5.1      2021-08-19 [2] CRAN (R 4.1.0)
#>  ragg           1.2.3      2022-09-29 [2] CRAN (R 4.1.2)
#>  RColorBrewer   1.1-3      2022-04-03 [2] CRAN (R 4.1.2)
#>  Rcpp           1.0.9      2022-07-08 [2] CRAN (R 4.1.2)
#>  rlang          1.0.6      2022-09-24 [2] CRAN (R 4.1.2)
#>  rmarkdown      2.17       2022-10-07 [2] CRAN (R 4.1.2)
#>  rprojroot      2.0.3      2022-04-02 [2] CRAN (R 4.1.2)
#>  rstudioapi     0.14       2022-08-22 [2] CRAN (R 4.1.2)
#>  sass           0.4.2      2022-07-16 [2] CRAN (R 4.1.2)
#>  scales         1.2.1      2022-08-20 [2] CRAN (R 4.1.2)
#>  sessioninfo    1.2.2      2021-12-06 [2] CRAN (R 4.1.0)
#>  stringi        1.7.8      2022-07-11 [2] CRAN (R 4.1.1)
#>  stringr        1.4.1      2022-08-20 [2] CRAN (R 4.1.2)
#>  systemfonts    1.0.4      2022-02-11 [2] CRAN (R 4.1.2)
#>  textshaping    0.3.6      2021-10-13 [2] CRAN (R 4.1.0)
#>  tibble         3.1.8      2022-07-22 [2] CRAN (R 4.1.2)
#>  tidyselect     1.2.0      2022-10-10 [2] CRAN (R 4.1.1)
#>  utf8           1.2.2      2021-07-24 [2] CRAN (R 4.1.0)
#>  vctrs          0.4.2      2022-09-29 [2] CRAN (R 4.1.2)
#>  withr          2.5.0      2022-03-03 [2] CRAN (R 4.1.2)
#>  xfun           0.33       2022-09-12 [2] CRAN (R 4.1.2)
#>  yaml           2.3.5      2022-02-21 [2] CRAN (R 4.1.2)
#> 
#>  [1] /private/var/folders/4p/3cy0qmp15x9216qsqhh84kzm0000gn/T/Rtmp8FLjXe/temp_libpathdb2a67370499
#>  [2] /Library/Frameworks/R.framework/Versions/4.1/Resources/library
#> 
#> ──────────────────────────────────────────────────────────────────────────────

  1. Snee RD (1974) “Graphical Display of Two-way Contingency Tables”. The American Statistician 28(1), 9-12. https://doi.org/10.2307/2683520↩︎

  2. Note that ordr::tidy() takes precedence for ‘tbl_ord’ objects over the class of the underlying model because the ‘tbl_ord’ class precedes this class.↩︎