These methods extract data from, and attribute new data to, objects of class "cmds_ord". This is a class introduced in this package to identify objects returned by cmdscale_ord(), which wraps stats::cmdscale().

# S3 method for cmds_ord
as_tbl_ord(x)

# S3 method for cmds_ord
recover_rows(x)

# S3 method for cmds_ord
recover_cols(x)

# S3 method for cmds_ord
recover_inertia(x)

# S3 method for cmds_ord
recover_coord(x)

# S3 method for cmds_ord
recover_conference(x)

# S3 method for cmds_ord
recover_aug_rows(x)

# S3 method for cmds_ord
recover_aug_cols(x)

# S3 method for cmds_ord
recover_aug_coord(x)

Arguments

x

An ordination object.

Value

The recovery generics recover_*() return core model components, distribution of inertia, supplementary elements, and intrinsic metadata; but they require methods for each model class to tell them what these components are.

The generic as_tbl_ord() returns its input wrapped in the 'tbl_ord' class. Its methods determine what model classes it is allowed to wrap. It then provides 'tbl_ord' methods with access to the recoverers and hence to the model components.

See also

Other methods for eigen-decomposition-based techniques: methods-eigen, methods-factanal

Other models from the stats package: methods-cancor, methods-factanal, methods-kmeans, methods-lm, methods-prcomp, methods-princomp

Examples

# 'dist' object (matrix of road distances) of large American cities
class(UScitiesD)
#> [1] "dist"
print(UScitiesD)
#>               Atlanta Chicago Denver Houston LosAngeles Miami NewYork
#> Chicago           587                                                
#> Denver           1212     920                                        
#> Houston           701     940    879                                 
#> LosAngeles       1936    1745    831    1374                         
#> Miami             604    1188   1726     968       2339              
#> NewYork           748     713   1631    1420       2451  1092        
#> SanFrancisco     2139    1858    949    1645        347  2594    2571
#> Seattle          2182    1737   1021    1891        959  2734    2408
#> Washington.DC     543     597   1494    1220       2300   923     205
#>               SanFrancisco Seattle
#> Chicago                           
#> Denver                            
#> Houston                           
#> LosAngeles                        
#> Miami                             
#> NewYork                           
#> SanFrancisco                      
#> Seattle                678        
#> Washington.DC         2442    2329

# use multidimensional scaling to infer artificial planar coordinates
UScitiesD %>%
  cmdscale_ord(k = 2) %>%
  as_tbl_ord() %>%
  print() -> usa_mds
#> # A tbl_ord of class 'cmds_ord': (10 x 2) x (10 x 2)'
#> # 2 coordinates: PCo1 and PCo2
#> # 
#> # Rows (symmetric): [ 10 x 2 | 0 ]
#>      PCo1   PCo2 | 
#>                  | 
#>  1  -719.  143.  | 
#>  2  -382. -341.  | 
#>  3   482.  -25.3 | 
#>  4  -161.  573.  | 
#>  5  1204.  390.  | 
#>  6 -1134.  582.  | 
#>  7 -1072. -519.  | 
#>  8  1421.  113.  | 
#>  9  1342. -580.  | 
#> 10  -980. -335.  | 
#> # 
#> # Columns (symmetric): [ 10 x 2 | 0 ]
#>      PCo1   PCo2 | 
#>                  | 
#>  1  -719.  143.  | 
#>  2  -382. -341.  | 
#>  3   482.  -25.3 | 
#>  4  -161.  573.  | 
#>  5  1204.  390.  | 
#>  6 -1134.  582.  | 
#>  7 -1072. -519.  | 
#>  8  1421.  113.  | 
#>  9  1342. -580.  | 
#> 10  -980. -335.  | 

# recover (equivalent) matrices of row and column artificial coordinates
get_rows(usa_mds)
#>             PCo1       PCo2
#>  [1,]  -718.7594  142.99427
#>  [2,]  -382.0558 -340.83962
#>  [3,]   481.6023  -25.28504
#>  [4,]  -161.4663  572.76991
#>  [5,]  1203.7380  390.10029
#>  [6,] -1133.5271  581.90731
#>  [7,] -1072.2357 -519.02423
#>  [8,]  1420.6033  112.58920
#>  [9,]  1341.7225 -579.73928
#> [10,]  -979.6220 -335.47281
get_cols(usa_mds)
#>             PCo1       PCo2
#>  [1,]  -718.7594  142.99427
#>  [2,]  -382.0558 -340.83962
#>  [3,]   481.6023  -25.28504
#>  [4,]  -161.4663  572.76991
#>  [5,]  1203.7380  390.10029
#>  [6,] -1133.5271  581.90731
#>  [7,] -1072.2357 -519.02423
#>  [8,]  1420.6033  112.58920
#>  [9,]  1341.7225 -579.73928
#> [10,]  -979.6220 -335.47281

# augment ordination with point names
(usa_mds <- augment_ord(usa_mds))
#> # A tbl_ord of class 'cmds_ord': (10 x 2) x (10 x 2)'
#> # 2 coordinates: PCo1 and PCo2
#> # 
#> # Rows (symmetric): [ 10 x 2 | 1 ]
#>      PCo1   PCo2 |    name         
#>                  |    <chr>        
#>  1  -719.  143.  |  1 Atlanta      
#>  2  -382. -341.  |  2 Chicago      
#>  3   482.  -25.3 |  3 Denver       
#>  4  -161.  573.  |  4 Houston      
#>  5  1204.  390.  |  5 LosAngeles   
#>  6 -1134.  582.  |  6 Miami        
#>  7 -1072. -519.  |  7 NewYork      
#>  8  1421.  113.  |  8 SanFrancisco 
#>  9  1342. -580.  |  9 Seattle      
#> 10  -980. -335.  | 10 Washington.DC
#> # 
#> # Columns (symmetric): [ 10 x 2 | 1 ]
#>      PCo1   PCo2 |    name         
#>                  |    <chr>        
#>  1  -719.  143.  |  1 Atlanta      
#>  2  -382. -341.  |  2 Chicago      
#>  3   482.  -25.3 |  3 Denver       
#>  4  -161.  573.  |  4 Houston      
#>  5  1204.  390.  |  5 LosAngeles   
#>  6 -1134.  582.  |  6 Miami        
#>  7 -1072. -519.  |  7 NewYork      
#>  8  1421.  113.  |  8 SanFrancisco 
#>  9  1342. -580.  |  9 Seattle      
#> 10  -980. -335.  | 10 Washington.DC

# reorient biplot to conventional compass
usa_mds %>%
  negate_ord(c(1, 2)) %>%
  ggbiplot() +
  geom_cols_text(aes(label = name), size = 3) +
  ggtitle("MDS biplot of distances between U.S. cities")