These methods extract data from, and attribute new data to, objects of class "svd_ord" returned by svd_ord().

# S3 method for svd_ord
as_tbl_ord(x)

# S3 method for svd_ord
recover_rows(x)

# S3 method for svd_ord
recover_cols(x)

# S3 method for svd_ord
recover_inertia(x)

# S3 method for svd_ord
recover_coord(x)

# S3 method for svd_ord
recover_conference(x)

# S3 method for svd_ord
recover_aug_rows(x)

# S3 method for svd_ord
recover_aug_cols(x)

# S3 method for svd_ord
recover_aug_coord(x)

Arguments

x

An ordination object.

Value

The recovery generics recover_*() return core model components, distribution of inertia, supplementary elements, and intrinsic metadata; but they require methods for each model class to tell them what these components are.

The generic as_tbl_ord() returns its input wrapped in the 'tbl_ord' class. Its methods determine what model classes it is allowed to wrap. It then provides 'tbl_ord' methods with access to the recoverers and hence to the model components.

See also

Other methods for singular value decomposition-based techniques: methods-cancor, methods-correspondence, methods-lda, methods-lra, methods-mca, methods-prcomp, methods-princomp

Other models from the base package: methods-eigen

Examples

# matrix of U.S. personal expenditure data
class(USPersonalExpenditure)
#> [1] "matrix" "array" 
print(USPersonalExpenditure)
#>                       1940   1945  1950 1955  1960
#> Food and Tobacco    22.200 44.500 59.60 73.2 86.80
#> Household Operation 10.500 15.500 29.00 36.5 46.20
#> Medical and Health   3.530  5.760  9.71 14.0 21.10
#> Personal Care        1.040  1.980  2.45  3.4  5.40
#> Private Education    0.341  0.974  1.80  2.6  3.64
# singular value decomposition into row and column coordinates
USPersonalExpenditure %>%
  svd_ord() %>%
  as_tbl_ord() %>%
  print() -> spend_svd
#> # A tbl_ord of class 'svd_ord': (5 x 5) x (5 x 5)'
#> # 5 coordinates: SV1, SV2, ..., SV5
#> # 
#> # Rows (standard): [ 5 x 5 | 0 ]
#>       SV1     SV2     SV3 ... | 
#>                               | 
#> 1 -0.881   0.456  -0.122      | 
#> 2 -0.436  -0.677   0.583  ... | 
#> 3 -0.176  -0.562  -0.734      | 
#> 4 -0.0455 -0.0929 -0.314      | 
#> 5 -0.0311 -0.0989 -0.0892     | 
#> # 
#> # Columns (standard): [ 5 x 5 | 0 ]
#>      SV1     SV2    SV3 ... | 
#>                             | 
#> 1 -0.159  0.113   0.182     | 
#> 2 -0.302  0.792  -0.527 ... | 
#> 3 -0.429  0.211   0.620     | 
#> 4 -0.532  0.0266  0.302     | 
#> 5 -0.645 -0.561  -0.461     | 

# recover matrices of row and column coordinates
get_rows(spend_svd)
#>                             SV1         SV2         SV3         SV4         SV5
#> Food and Tobacco    -0.88086766  0.45563080 -0.12237718  0.02450591 -0.02993361
#> Household Operation -0.43580483 -0.67662102  0.58341818 -0.07630369  0.07784028
#> Medical and Health  -0.17637018 -0.56230756 -0.73372346  0.04111351 -0.33565360
#> Personal Care       -0.04553400 -0.09285599 -0.31360568 -0.49361448  0.80454996
#> Private Education   -0.03108899 -0.09885616 -0.08915387  0.86500383  0.48278452
get_cols(spend_svd)
#>             SV1         SV2        SV3         SV4         SV5
#> 1940 -0.1589586  0.11313761  0.1824780 -0.89728506 -0.35144462
#> 1945 -0.3016855  0.79223017 -0.5274149  0.02654943  0.04985844
#> 1950 -0.4293572  0.21081041  0.6202698 -0.01464040  0.62150007
#> 1955 -0.5323309  0.02659741  0.3024320  0.42107353 -0.66869157
#> 1960 -0.6449761 -0.56073415 -0.4607988 -0.12906349  0.20146975

# augment with row and column names
augment_ord(spend_svd)
#> # A tbl_ord of class 'svd_ord': (5 x 5) x (5 x 5)'
#> # 5 coordinates: SV1, SV2, ..., SV5
#> # 
#> # Rows (standard): [ 5 x 5 | 1 ]
#>       SV1     SV2     SV3 ... |   name               
#>                               |   <chr>              
#> 1 -0.881   0.456  -0.122      | 1 Food and Tobacco   
#> 2 -0.436  -0.677   0.583  ... | 2 Household Operation
#> 3 -0.176  -0.562  -0.734      | 3 Medical and Health 
#> 4 -0.0455 -0.0929 -0.314      | 4 Personal Care      
#> 5 -0.0311 -0.0989 -0.0892     | 5 Private Education  
#> # 
#> # Columns (standard): [ 5 x 5 | 1 ]
#>      SV1     SV2    SV3 ... |   name 
#>                             |   <chr>
#> 1 -0.159  0.113   0.182     | 1 1940 
#> 2 -0.302  0.792  -0.527 ... | 2 1945 
#> 3 -0.429  0.211   0.620     | 3 1950 
#> 4 -0.532  0.0266  0.302     | 4 1955 
#> 5 -0.645 -0.561  -0.461     | 5 1960 
# initial matrix decomposition confers no inertia to coordinates
get_conference(spend_svd)
#> [1] 0 0