These methods extract data from, and attribute new data to, objects of class "correspondence" from the MASS package.

# S3 method for correspondence
as_tbl_ord(x)

# S3 method for correspondence
recover_rows(x)

# S3 method for correspondence
recover_cols(x)

# S3 method for correspondence
recover_inertia(x)

# S3 method for correspondence
recover_conference(x)

# S3 method for correspondence
recover_coord(x)

# S3 method for correspondence
recover_aug_rows(x)

# S3 method for correspondence
recover_aug_cols(x)

# S3 method for correspondence
recover_aug_coord(x)

Arguments

x

An ordination object.

Value

The recovery generics recover_*() return core model components, distribution of inertia, supplementary elements, and intrinsic metadata; but they require methods for each model class to tell them what these components are.

The generic as_tbl_ord() returns its input wrapped in the 'tbl_ord' class. Its methods determine what model classes it is allowed to wrap. It then provides 'tbl_ord' methods with access to the recoverers and hence to the model components.

See also

Other methods for singular value decomposition-based techniques: methods-cancor, methods-lda, methods-lra, methods-mca, methods-prcomp, methods-princomp, methods-svd

Other models from the MASS package: methods-lda, methods-mca

Examples

# table of hair and eye color data collapsed by sex
data(quine, package = "MASS")
class(quine)
#> [1] "data.frame"
head(quine)
#>   Eth Sex Age Lrn Days
#> 1   A   M  F0  SL    2
#> 2   A   M  F0  SL   11
#> 3   A   M  F0  SL   14
#> 4   A   M  F0  AL    5
#> 5   A   M  F0  AL    5
#> 6   A   M  F0  AL   13

# use correspondence analysis to construct row and column profiles
(quine_ca <- MASS::corresp(~ Age + Eth, data = quine))
#> First canonical correlation(s): 0.05317534 
#> 
#>  Age scores:
#>         F0         F1         F2         F3 
#> -0.3344445  1.4246090 -1.0320002 -0.4612728 
#> 
#>  Eth scores:
#>          A          N 
#> -1.0563816  0.9466276 
(quine_ca <- as_tbl_ord(quine_ca))
#> # A tbl_ord of class 'correspondence': (4 x 1) x (2 x 1)'
#> # 1 coordinate: Can1
#> # 
#> # Rows (standard): [ 4 x 1 | 0 ]
#>     Can1 | 
#>          | 
#> 1 -0.334 | 
#> 2  1.42  | 
#> 3 -1.03  | 
#> 4 -0.461 | 
#> # 
#> # Columns (standard): [ 2 x 1 | 0 ]
#>     Can1 | 
#>          | 
#> 1 -1.06  | 
#> 2  0.947 | 

# recover row and column profiles
get_rows(quine_ca)
#>          Can1
#> F0 -0.3344445
#> F1  1.4246090
#> F2 -1.0320002
#> F3 -0.4612728
get_cols(quine_ca)
#>         Can1
#> A -1.0563816
#> N  0.9466276

# augment profiles with names, masses, distances, and inertias
(quine_ca <- augment_ord(quine_ca))
#> # A tbl_ord of class 'correspondence': (4 x 1) x (2 x 1)'
#> # 1 coordinate: Can1
#> # 
#> # Rows (standard): [ 4 x 1 | 1 ]
#>     Can1 |   name 
#>          |   <chr>
#> 1 -0.334 | 1 F0   
#> 2  1.42  | 2 F1   
#> 3 -1.03  | 3 F2   
#> 4 -0.461 | 4 F3   
#> # 
#> # Columns (standard): [ 2 x 1 | 1 ]
#>     Can1 |   name 
#>          |   <chr>
#> 1 -1.06  | 1 A    
#> 2  0.947 | 2 N