R/geom-intervals.r
geom_lineranges.Rd
geom_lineranges()
renders horizontal and vertical intervals
for a specified subject or variable; geom_pointranges()
additionally
renders a point at their crosshairs.
geom_lineranges(
mapping = NULL,
data = NULL,
stat = "center",
position = "identity",
...,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE
)
geom_pointranges(
mapping = NULL,
data = NULL,
stat = "center",
position = "identity",
...,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE
)
Set of aesthetic mappings created by aes()
. If specified and
inherit.aes = TRUE
(the default), it is combined with the default mapping
at the top level of the plot. You must supply mapping
if there is no plot
mapping.
The data to be displayed in this layer. There are three options:
If NULL
, the default, the data is inherited from the plot
data as specified in the call to ggplot()
.
A data.frame
, or other object, will override the plot
data. All objects will be fortified to produce a data frame. See
fortify()
for which variables will be created.
A function
will be called with a single argument,
the plot data. The return value must be a data.frame
, and
will be used as the layer data. A function
can be created
from a formula
(e.g. ~ head(.x, 10)
).
The statistical transformation to use on the data for this layer.
When using a geom_*()
function to construct a layer, the stat
argument can be used the override the default coupling between geoms and
stats. The stat
argument accepts the following:
A Stat
ggproto subclass, for example StatCount
.
A string naming the stat. To give the stat as a string, strip the
function name of the stat_
prefix. For example, to use stat_count()
,
give the stat as "count"
.
For more information and other ways to specify the stat, see the layer stat documentation.
A position adjustment to use on the data for this layer. This
can be used in various ways, including to prevent overplotting and
improving the display. The position
argument accepts the following:
The result of calling a position function, such as position_jitter()
.
This method allows for passing extra arguments to the position.
A string naming the position adjustment. To give the position as a
string, strip the function name of the position_
prefix. For example,
to use position_jitter()
, give the position as "jitter"
.
For more information and other ways to specify the position, see the layer position documentation.
Additional arguments passed to ggplot2::layer()
.
Passed to ggplot2::layer()
.
logical. Should this layer be included in the legends?
NA
, the default, includes if any aesthetics are mapped.
FALSE
never includes, and TRUE
always includes.
It can also be a named logical vector to finely select the aesthetics to
display.
If FALSE
, overrides the default aesthetics,
rather than combining with them. This is most useful for helper functions
that define both data and aesthetics and shouldn't inherit behaviour from
the default plot specification, e.g. borders()
.
A ggproto layer.
ggbiplot()
uses ggplot2::fortify()
internally to produce a single data
frame with a .matrix
column distinguishing the subjects ("rows"
) and
variables ("cols"
). The stat layers stat_rows()
and stat_cols()
simply
filter the data frame to one of these two.
The geom layers geom_rows_*()
and geom_cols_*()
call the corresponding
stat in order to render plot elements for the corresponding factor matrix.
geom_dims_*()
selects a default matrix based on common practice, e.g.
points for rows and arrows for columns.
geom_lineranges()
and geom_pointranges()
understand the following
aesthetics (required aesthetics are in bold):
x
xmin
xmax
y
ymin
ymax
`
alpha
colour
linewidth
linetype
size
group
Other geom layers:
geom_axis()
,
geom_interpolation()
,
geom_isoline()
,
geom_origin()
,
geom_rule()
,
geom_text_radiate()
,
geom_vector()
# compute log-ratio analysis of Freestone primary class composition measurements
glass %>%
ordinate(cols = c(SiO2, Al2O3, CaO, FeO, MgO),
model = lra, compositional = TRUE) %>%
confer_inertia("rows") %>%
print() -> glass_lra
#> # A tbl_ord of class 'lra': (68 x 4) x (5 x 4)'
#> # 4 coordinates: LRSV1, LRSV2, ..., LRSV4
#> #
#> # Rows (principal): [ 68 x 4 | 12 ]
#> LRSV1 LRSV2 LRSV3 ... | weight Site Anal Context Form
#> | <dbl> <chr> <chr> <chr> <chr>
#> 1 0.0925 0.0929 0.0156 | 1 0.0147 Bet El… 1 L14.B1… Chunk
#> 2 0.0905 0.0591 -0.0439 ... | 2 0.0147 Bet El… 2 L14.B1… Chunk
#> 3 0.0844 0.0333 -0.000492 | 3 0.0147 Bet El… 3 L14.B1… Chunk
#> 4 0.0647 0.0211 0.0267 | 4 0.0147 Bet El… 4 L14.B1… Chunk
#> 5 0.0635 0.0257 0.0239 | 5 0.0147 Bet El… 5 L14.B1… Chunk
#> # ℹ 63 more rows
#> # ℹ 7 more variables: TiO2 <dbl>,
#> # MnO <dbl>, Na2O <dbl>,
#> # K2O <dbl>, P2O5 <dbl>,
#> # Cl <dbl>, SO3 <dbl>
#> #
#> # Columns (standard): [ 5 x 4 | 2 ]
#> LRSV1 LRSV2 LRSV3 ... | name weight
#> | <chr> <dbl>
#> 1 -0.00548 0.338 0.237 | 1 SiO2 0.852
#> 2 4.15 -0.714 -2.50 ... | 2 Al2O3 0.0313
#> 3 -0.517 -2.95 -0.126 | 3 CaO 0.0976
#> 4 0.553 2.23 -9.57 | 4 FeO 0.00524
#> 5 -5.61 0.790 -4.47 | 5 MgO 0.0138
# row-principal biplot with ordinate-wise standard deviations
glass_lra %>%
ggbiplot(aes(color = Site), sec.axes = "cols") +
theme_biplot() +
scale_color_brewer(type = "qual", palette = 6) +
geom_cols_text(stat = "chull", aes(label = name), color = "#444444") +
geom_rows_lineranges(fun.data = mean_sdl, linewidth = .75) +
geom_rows_point(alpha = .5) +
ggtitle(
"Row-principal LRA biplot of Freestone glass measurements",
"Ranges 2 sample standard deviations from centroids"
)