These statistical transformations (stats) adapt
conventional ggplot2 stats to one or the other matrix factor
of a tbl_ord, in lieu of stat_rows()
or stat_cols()
. They
accept the same parameters as their corresponding conventional
stats.
stat_rows_density_2d(
mapping = NULL,
data = NULL,
geom = "density_2d",
position = "identity",
...,
contour = TRUE,
contour_var = "density",
n = 100,
h = NULL,
adjust = c(1, 1),
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE
)
stat_cols_density_2d(
mapping = NULL,
data = NULL,
geom = "density_2d",
position = "identity",
...,
contour = TRUE,
contour_var = "density",
n = 100,
h = NULL,
adjust = c(1, 1),
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE
)
stat_rows_density_2d_filled(
mapping = NULL,
data = NULL,
geom = "density_2d_filled",
position = "identity",
...,
contour = TRUE,
contour_var = "density",
n = 100,
h = NULL,
adjust = c(1, 1),
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE
)
stat_cols_density_2d_filled(
mapping = NULL,
data = NULL,
geom = "density_2d_filled",
position = "identity",
...,
contour = TRUE,
contour_var = "density",
n = 100,
h = NULL,
adjust = c(1, 1),
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE
)
stat_rows_ellipse(
mapping = NULL,
data = NULL,
geom = "path",
position = "identity",
...,
type = "t",
level = 0.95,
segments = 51,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE
)
stat_cols_ellipse(
mapping = NULL,
data = NULL,
geom = "path",
position = "identity",
...,
type = "t",
level = 0.95,
segments = 51,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE
)
stat_rows_center(
mapping = NULL,
data = NULL,
geom = "point",
position = "identity",
show.legend = NA,
inherit.aes = TRUE,
...,
fun.data = NULL,
fun.center = NULL,
fun.min = NULL,
fun.max = NULL,
fun.args = list()
)
stat_cols_center(
mapping = NULL,
data = NULL,
geom = "point",
position = "identity",
show.legend = NA,
inherit.aes = TRUE,
...,
fun.data = NULL,
fun.center = NULL,
fun.min = NULL,
fun.max = NULL,
fun.args = list()
)
stat_rows_star(
mapping = NULL,
data = NULL,
geom = "segment",
position = "identity",
show.legend = NA,
inherit.aes = TRUE,
...,
fun.data = NULL,
fun.center = NULL,
fun.args = list()
)
stat_cols_star(
mapping = NULL,
data = NULL,
geom = "segment",
position = "identity",
show.legend = NA,
inherit.aes = TRUE,
...,
fun.data = NULL,
fun.center = NULL,
fun.args = list()
)
stat_rows_chull(
mapping = NULL,
data = NULL,
geom = "polygon",
position = "identity",
show.legend = NA,
inherit.aes = TRUE,
...
)
stat_cols_chull(
mapping = NULL,
data = NULL,
geom = "polygon",
position = "identity",
show.legend = NA,
inherit.aes = TRUE,
...
)
stat_rows_cone(
mapping = NULL,
data = NULL,
geom = "path",
position = "identity",
origin = FALSE,
show.legend = NA,
inherit.aes = TRUE,
...
)
stat_cols_cone(
mapping = NULL,
data = NULL,
geom = "path",
position = "identity",
origin = FALSE,
show.legend = NA,
inherit.aes = TRUE,
...
)
stat_rows_projection(
mapping = NULL,
data = NULL,
geom = "segment",
position = "identity",
referent = NULL,
ref_subset = NULL,
ref_elements = "active",
...,
show.legend = NA,
inherit.aes = TRUE
)
stat_cols_projection(
mapping = NULL,
data = NULL,
geom = "segment",
position = "identity",
referent = NULL,
ref_subset = NULL,
ref_elements = "active",
...,
show.legend = NA,
inherit.aes = TRUE
)
stat_rows_rule(
mapping = NULL,
data = NULL,
geom = "rule",
position = "identity",
fun.lower = "minpp",
fun.upper = "maxpp",
fun.offset = "minabspp",
fun.args = list(),
referent = NULL,
show.legend = NA,
inherit.aes = TRUE,
ref_subset = NULL,
ref_elements = "active",
...
)
stat_cols_rule(
mapping = NULL,
data = NULL,
geom = "rule",
position = "identity",
fun.lower = "minpp",
fun.upper = "maxpp",
fun.offset = "minabspp",
fun.args = list(),
referent = NULL,
show.legend = NA,
inherit.aes = TRUE,
ref_subset = NULL,
ref_elements = "active",
...
)
stat_rows_scale(
mapping = NULL,
data = NULL,
geom = "point",
position = "identity",
show.legend = NA,
inherit.aes = TRUE,
...,
mult = 1
)
stat_cols_scale(
mapping = NULL,
data = NULL,
geom = "point",
position = "identity",
show.legend = NA,
inherit.aes = TRUE,
...,
mult = 1
)
stat_rows_spantree(
mapping = NULL,
data = NULL,
geom = "segment",
position = "identity",
engine = "mlpack",
method = "euclidean",
show.legend = NA,
inherit.aes = TRUE,
...
)
stat_cols_spantree(
mapping = NULL,
data = NULL,
geom = "segment",
position = "identity",
engine = "mlpack",
method = "euclidean",
show.legend = NA,
inherit.aes = TRUE,
...
)
Set of aesthetic mappings created by aes()
. If specified and
inherit.aes = TRUE
(the default), it is combined with the default mapping
at the top level of the plot. You must supply mapping
if there is no plot
mapping.
The data to be displayed in this layer. There are three options:
If NULL
, the default, the data is inherited from the plot
data as specified in the call to ggplot()
.
A data.frame
, or other object, will override the plot
data. All objects will be fortified to produce a data frame. See
fortify()
for which variables will be created.
A function
will be called with a single argument,
the plot data. The return value must be a data.frame
, and
will be used as the layer data. A function
can be created
from a formula
(e.g. ~ head(.x, 10)
).
The geometric object to use to display the data for this layer.
When using a stat_*()
function to construct a layer, the geom
argument
can be used to override the default coupling between stats and geoms. The
geom
argument accepts the following:
A Geom
ggproto subclass, for example GeomPoint
.
A string naming the geom. To give the geom as a string, strip the
function name of the geom_
prefix. For example, to use geom_point()
,
give the geom as "point"
.
For more information and other ways to specify the geom, see the layer geom documentation.
A position adjustment to use on the data for this layer. This
can be used in various ways, including to prevent overplotting and
improving the display. The position
argument accepts the following:
The result of calling a position function, such as position_jitter()
.
This method allows for passing extra arguments to the position.
A string naming the position adjustment. To give the position as a
string, strip the function name of the position_
prefix. For example,
to use position_jitter()
, give the position as "jitter"
.
For more information and other ways to specify the position, see the layer position documentation.
Additional arguments passed to ggplot2::layer()
.
If TRUE
, contour the results of the 2d density
estimation.
Character string identifying the variable to contour
by. Can be one of "density"
, "ndensity"
, or "count"
. See the section
on computed variables for details.
Number of grid points in each direction.
Bandwidth (vector of length two). If NULL
, estimated
using MASS::bandwidth.nrd()
.
A multiplicative bandwidth adjustment to be used if 'h' is
'NULL'. This makes it possible to adjust the bandwidth while still
using the a bandwidth estimator. For example, adjust = 1/2
means
use half of the default bandwidth.
If FALSE
, the default, missing values are removed with
a warning. If TRUE
, missing values are silently removed.
logical. Should this layer be included in the legends?
NA
, the default, includes if any aesthetics are mapped.
FALSE
never includes, and TRUE
always includes.
It can also be a named logical vector to finely select the aesthetics to
display.
If FALSE
, overrides the default aesthetics,
rather than combining with them. This is most useful for helper functions
that define both data and aesthetics and shouldn't inherit behaviour from
the default plot specification, e.g. borders()
.
The type of ellipse.
The default "t"
assumes a multivariate t-distribution, and
"norm"
assumes a multivariate normal distribution.
"euclid"
draws a circle with the radius equal to level
,
representing the euclidean distance from the center.
This ellipse probably won't appear circular unless coord_fixed()
is applied.
The level at which to draw an ellipse,
or, if type="euclid"
, the radius of the circle to be drawn.
The number of segments to be used in drawing the ellipse.
Functions treated as in
ggplot2::stat_summary()
, with fun.center
, fun.min
, and fun.max
behaving as fun.y
, fun.ymin
, and fun.ymax
.
Arguments passed to the fun.*
.
Logical; whether to include the origin with the transformed
data. Defaults to FALSE
.
The reference data set; see Details.
Analogues of elements
and subset
applied
to referent
.
Functions used to determine the limits
of the rules and the translations of the axes from the projections of
referent
onto the axes and onto their normal vectors.
Numeric value used to scale the coordinates.
A single character string specifying the package implementation
to use; "mlpack"
, "vegan"
, or "ade4"
.
Passed to stats::dist()
if engine
is "vegan"
or "ade4"
,
ignored if "mlpack"
.
A ggproto layer.
This statistical transformation is compatible with the convenience function
ord_aes()
.
Some transformations (e.g. stat_center()
) commute with projection to the
lower (1 or 2)-dimensional biplot space. If they detect aesthetics of the
form ..coord[0-9]+
, then ..coord1
and ..coord2
are converted to x
and
y
while any remaining are ignored.
Other transformations (e.g. stat_spantree()
) yield different results in a
lower-dimensional biplot when they are computed before versus after
projection. If the stat layer detects these aesthetics, then the
transformation is performed before projection, and the results in the first
two dimensions are returned as x
and y
.
A small number of transformations (stat_rule()
) are incompatible with
ordination aesthetics but will accept ord_aes()
without warning.
Other biplot layers:
biplot-geoms
,
stat_referent()
,
stat_rows()
# compute row-principal components of scaled iris measurements
iris[, -5] %>%
prcomp(scale = TRUE) %>%
as_tbl_ord() %>%
mutate_rows(species = iris$Species) %>%
print() -> iris_pca
#> # A tbl_ord of class 'prcomp': (150 x 4) x (4 x 4)'
#> # 4 coordinates: PC1, PC2, ..., PC4
#> #
#> # Rows (principal): [ 150 x 4 | 1 ]
#> PC1 PC2 PC3 ... | species
#> | <fct>
#> 1 -2.26 -0.478 0.127 | 1 setosa
#> 2 -2.07 0.672 0.234 ... | 2 setosa
#> 3 -2.36 0.341 -0.0441 | 3 setosa
#> 4 -2.29 0.595 -0.0910 | 4 setosa
#> 5 -2.38 -0.645 -0.0157 | 5 setosa
#> # ℹ 145 more rows
#> #
#> # Columns (standard): [ 4 x 4 | 0 ]
#> PC1 PC2 PC3 ... |
#> |
#> 1 0.521 -0.377 0.720 |
#> 2 -0.269 -0.923 -0.244 ... |
#> 3 0.580 -0.0245 -0.142 |
#> 4 0.565 -0.0669 -0.634 |
# row-principal biplot with centroids and confidence elliptical disks
iris_pca %>%
ggbiplot(aes(color = species)) +
theme_bw() +
geom_rows_point() +
geom_polygon(
aes(fill = species),
color = NA, alpha = .25, stat = "rows_ellipse"
) +
geom_cols_vector(color = "#444444") +
scale_color_brewer(
type = "qual", palette = 2,
aesthetics = c("color", "fill")
) +
ggtitle(
"Row-principal PCA biplot of Anderson iris measurements",
"Overlaid with 95% confidence disks"
)