stat-biplot-ellipse.Rd
These ordination stats are adapted from
ggplot2::stat_ellipse()
.
stat_rows_ellipse( mapping = NULL, data = NULL, geom = "path", position = "identity", show.legend = NA, inherit.aes = TRUE, ..., type = "t", level = 0.95, segments = 51 ) stat_cols_ellipse( mapping = NULL, data = NULL, geom = "path", position = "identity", show.legend = NA, inherit.aes = TRUE, ..., type = "t", level = 0.95, segments = 51 )
mapping | Set of aesthetic mappings created by |
---|---|
data | The data to be displayed in this layer. There are three options: If A A |
geom | The geometric object to use display the data |
position | Position adjustment, either as a string, or the result of a call to a position adjustment function. |
show.legend | logical. Should this layer be included in the legends?
|
inherit.aes | If |
... | Additional arguments passed to |
type | The type of ellipse.
The default |
level | The level at which to draw an ellipse,
or, if |
segments | The number of segments to be used in drawing the ellipse. |
An object of class StatRowsEllipse
(inherits from StatEllipse
, Stat
, ggproto
, gg
) of length 2.
An object of class StatColsEllipse
(inherits from StatEllipse
, Stat
, ggproto
, gg
) of length 2.
ggbiplot()
uses ggplot2::fortify()
internally to produce a single data
frame with a .matrix
column distinguishing the subjects ("rows"
) and
variables ("cols"
). The stat layers stat_rows()
and stat_cols()
simply
filter the data frame to one of these two.
The geom layers geom_rows_*()
and geom_cols_*()
call the corresponding
stat in order to render plot elements for the corresponding factor matrix.
geom_dims_*()
selects a default matrix based on common practice, e.g.
points for rows and arrows for columns.
# compute row-principal components of scaled iris measurements iris[, -5] %>% prcomp(scale = TRUE) %>% as_tbl_ord() %>% mutate_rows(species = iris$Species) %>% print() -> iris_pca#> # A tbl_ord of class 'prcomp': (150 x 4) x (4 x 4)' #> # 4 coordinates: PC1, PC2, ..., PC4 #> # #> # Rows: [ 150 x 4 | 1 ] #> PC1 PC2 PC3 ... | species #> | <fct> #> 1 -2.26 -0.478 0.127 | 1 setosa #> 2 -2.07 0.672 0.234 ... | 2 setosa #> 3 -2.36 0.341 -0.0441 | 3 setosa #> 4 -2.29 0.595 -0.0910 | 4 setosa #> 5 -2.38 -0.645 -0.0157 | 5 setosa #> # … with 145 more rows #> # #> # Columns: [ 4 x 4 | 0 ] #> PC1 PC2 PC3 ... | #> | #> 1 0.521 -0.377 0.720 | #> 2 -0.269 -0.923 -0.244 ... | #> 3 0.580 -0.0245 -0.142 | #> 4 0.565 -0.0669 -0.634 |# row-principal biplot with centroids and confidence ellipses iris_pca %>% ggbiplot(aes(color = species)) + theme_bw() + scale_color_brewer(type = "qual", palette = 2) + geom_rows_point(alpha = .5) + stat_rows_center(fun.center = "mean", size = 3, shape = "triangle") + stat_rows_ellipse(level = .99) + ggtitle( "Row-principal PCA biplot of Anderson iris measurements", "Overlaid with centroids and 99% confidence ellipses" )# row-principal biplot with centroids and confidence elliptical disks iris_pca %>% ggbiplot(aes(color = species)) + theme_bw() + geom_rows_point() + geom_polygon( aes(fill = species), color = NA, alpha = .25, stat = "rows_ellipse" ) + geom_cols_vector(color = "#444444") + scale_color_brewer( type = "qual", palette = 2, aesthetics = c("color", "fill") ) + ggtitle( "Row-principal PCA biplot of Anderson iris measurements", "Overlaid with 95% confidence disks" )