Classifications and rankings of U.S. universities for the years 2017--2020.

data(qswur_usa)

Format

A tibble of 13 variables on 612 cases:

year

year of rankings

institution

institution of higher learning

size

size category of institution

focus

subject range of institution

res

research intensity of institution

age

age classification of institution

status

status of institution

rk_academic

rank by academic reputation

rk_employer

rank by employer reputation

rk_ratio

rank by faculty--student ratio

rk_citations

rank by citations per faculty

rk_intl_faculty

rank by international faculty ratio

rk_intl_students

rank by international student ratio

Source

Quacquarelli Symonds (2021).

Details

Ranking data were obtained from the public QS website.

References

Quacquarelli Symonds (2021) "University Rankings". TopUniversities.com https://www.topuniversities.com/university-rankings.

Examples

# subset QS data to rank variables
head(qswur_usa)
#> # A tibble: 6 × 13
#>    year institu…¹ size  focus res     age status rk_ac…² rk_em…³ rk_ra…⁴ rk_ci…⁵
#>   <int> <chr>     <fct> <fct> <fct> <int> <chr>    <int>   <int>   <int>   <int>
#> 1  2017 MASSACHU… M     CO    VH        5 B            6       4      12      10
#> 2  2017 STANFORD… L     FC    VH        5 A            5       5      20      14
#> 3  2017 HARVARD … L     FC    VH        5 B            1       1      42       8
#> 4  2017 CALIFORN… S     CO    VH        5 B           23      90       3       4
#> 5  2017 UNIVERSI… L     FC    VH        5 B           13      47      54      49
#> 6  2017 PRINCETO… M     CO    VH        5 B           10      32     115       3
#> # … with 2 more variables: rk_intl_faculty <int>, rk_intl_students <int>, and
#> #   abbreviated variable names ¹​institution, ²​rk_academic, ³​rk_employer,
#> #   ⁴​rk_ratio, ⁵​rk_citations
qs_ranks <- subset(
  qswur_usa,
  complete.cases(qswur_usa),
  select = 8:13
)
# calculate Kendall correlation matrix
qs_cor <- cor(qs_ranks, method = "kendall")

# calculate eigendecomposition
qs_eigen <- eigen_ord(qs_cor)
# view correlations as cosines of biplot vectors
biplot(x = qs_eigen$vectors, y = qs_eigen$vectors, col = c(NA, "black"))