Classifications and rankings of U.S. universities for the years 2017--2020.
data(qswur_usa)
A tibble of 13 variables on 612 cases:
year of rankings
institution of higher learning
size category of institution
subject range of institution
research intensity of institution
age classification of institution
status of institution
rank by academic reputation
rank by employer reputation
rank by faculty--student ratio
rank by citations per faculty
rank by international faculty ratio
rank by international student ratio
Quacquarelli Symonds (2021).
Ranking data were obtained from the public QS website.
Quacquarelli Symonds (2021) "University Rankings". TopUniversities.com https://www.topuniversities.com/university-rankings.
# subset QS data to rank variables
head(qswur_usa)
#> # A tibble: 6 × 13
#> year institu…¹ size focus res age status rk_ac…² rk_em…³ rk_ra…⁴ rk_ci…⁵
#> <int> <chr> <fct> <fct> <fct> <int> <chr> <int> <int> <int> <int>
#> 1 2017 MASSACHU… M CO VH 5 B 6 4 12 10
#> 2 2017 STANFORD… L FC VH 5 A 5 5 20 14
#> 3 2017 HARVARD … L FC VH 5 B 1 1 42 8
#> 4 2017 CALIFORN… S CO VH 5 B 23 90 3 4
#> 5 2017 UNIVERSI… L FC VH 5 B 13 47 54 49
#> 6 2017 PRINCETO… M CO VH 5 B 10 32 115 3
#> # … with 2 more variables: rk_intl_faculty <int>, rk_intl_students <int>, and
#> # abbreviated variable names ¹institution, ²rk_academic, ³rk_employer,
#> # ⁴rk_ratio, ⁵rk_citations
qs_ranks <- subset(
qswur_usa,
complete.cases(qswur_usa),
select = 8:13
)
# calculate Kendall correlation matrix
qs_cor <- cor(qs_ranks, method = "kendall")
# calculate eigendecomposition
qs_eigen <- eigen_ord(qs_cor)
# view correlations as cosines of biplot vectors
biplot(x = qs_eigen$vectors, y = qs_eigen$vectors, col = c(NA, "black"))