Classifications and rankings of U.S. universities for the years 2017–2020.
data(qswur_usa)
A tibble of 13 variables on 612 cases:
year of rankings
institution of higher learning
size category of institution
subject range of institution
research intensity of institution
age classification of institution
status of institution
rank by academic reputation
rank by employer reputation
rank by faculty–student ratio
rank by citations per faculty
rank by international faculty ratio
rank by international student ratio
Quacquarelli Symonds (2021).
Ranking data were obtained from the public QS website.
Quacquarelli Symonds (2021) "University Rankings". TopUniversities.com https://www.topuniversities.com/university-rankings.
# subset QS data to rank variables
head(qswur_usa)
#> # A tibble: 6 × 13
#> year institution size focus res age status rk_academic rk_employer
#> <int> <chr> <fct> <fct> <fct> <int> <chr> <int> <int>
#> 1 2017 MASSACHUSETTS IN… M CO VH 5 B 6 4
#> 2 2017 STANFORD UNIVERS… L FC VH 5 A 5 5
#> 3 2017 HARVARD UNIVERSI… L FC VH 5 B 1 1
#> 4 2017 CALIFORNIA INSTI… S CO VH 5 B 23 90
#> 5 2017 UNIVERSITY OF CH… L FC VH 5 B 13 47
#> 6 2017 PRINCETON UNIVER… M CO VH 5 B 10 32
#> # ℹ 4 more variables: rk_ratio <int>, rk_citations <int>,
#> # rk_intl_faculty <int>, rk_intl_students <int>
qs_ranks <- subset(
qswur_usa,
complete.cases(qswur_usa),
select = 8:13
)
# calculate Kendall correlation matrix
qs_cor <- cor(qs_ranks, method = "kendall")
# calculate eigendecomposition
qs_eigen <- eigen_ord(qs_cor)
# view correlations as cosines of biplot vectors
biplot(x = qs_eigen$vectors, y = qs_eigen$vectors, col = c(NA, "black"))