inference.Rd
Compute test statistics and conduct null hypothesis tests for persistence data using persistence landscapes. See Section 3 of Bubenik (2015).
pl_z_test(
x,
y,
alternative = c("two.sided", "less", "greater"),
conf.level = 0.95,
supports = NULL,
r = 0,
p = 1
)
pd_z_test(
x,
y,
degree = NULL,
exact = FALSE,
xmin = NULL,
xmax = NULL,
xby = NULL,
alternative = c("two.sided", "less", "greater"),
conf.level = 0.95,
supports = NULL,
r = 0,
p = 1
)
pl_perm_test(x, y, p = 1, complete = FALSE, max_iter = 1000L)
Lists of persistence landscapes.
a character string specifying the alternative
hypothesis, must be one of "two.sided"
(default),
"greater"
or "less"
. You can specify just the initial
letter.
confidence level of the interval.
List of support intervals for landscape levels.
Non-negative number; the power of the coefficient \(1/k\) in the indicator linear form.
Positive integer or infinity; the power used to compute an integral.
Non-negative integer; if input is a persistence diagram object, then the dimension for which to compute a landscape. (For degree \(d\), the \((d+1)\)th matrix in the list will be selected.)
Set to TRUE
for exact representation, FALSE
(default) for
discrete.
Domain thresholds for discrete PL; if not specified, then taken to be the support of the PL constructed from the data or the internal values of the 'Rcpp_PersistenceLandscape' object.
Domain grid diameter for discrete PL; if not specified, then set to the power of 10 that yields between 100 and 1000 intervals.
Logical; whether to compute averages between all combinations from the two lists of landscapes.
Positive integer; the maximum number of combinations using which to estimate the null distance between mean landscapes.
A list with class "htest"
containing the following components:
statistic
(z-test only) the value of the test statistic.
parameter
(z-test only) the degrees of freedom of the test, \(\lvert x \rvert + \lvert y \rvert - 2\).
p.value
the p-value for the test.
estimate
the estimated difference difference in means.
null.value
the difference in means under the null hypothesis, always \(0\).
alternative
a character string describing the alternative hypothesis.
method
a character string indicating the test performed.
conf.int
(z-test only) a confidence interval for the estimated difference in means.
Depends on the choice of conf.level
.
arithmetic, algebra, analysis for other landscape functions.
# two sets of landscapes from similar but distinctive point clouds
set.seed(711018L)
circlescapes <- replicate(
6,
tdaunif::sample_circle(n = rpois(n = 1, lambda = 24)) |>
ripserr::vietoris_rips(dim = 2L, threshold = 2) |>
landscape(degree = 1, exact = TRUE)
)
#> Warning: `dim` parameter has been deprecated; use `max_dim` instead.
#> Warning: `dim` parameter has been deprecated; use `max_dim` instead.
#> Warning: `dim` parameter has been deprecated; use `max_dim` instead.
#> Warning: `dim` parameter has been deprecated; use `max_dim` instead.
#> Warning: `dim` parameter has been deprecated; use `max_dim` instead.
#> Warning: `dim` parameter has been deprecated; use `max_dim` instead.
toruscapes <- replicate(
6,
tdaunif::sample_torus_tube(n = rpois(n = 1, lambda = 24)) |>
ripserr::vietoris_rips(dim = 2L, threshold = 2) |>
landscape(degree = 1, exact = TRUE)
)
#> Warning: `dim` parameter has been deprecated; use `max_dim` instead.
#> Warning: `dim` parameter has been deprecated; use `max_dim` instead.
#> Warning: `dim` parameter has been deprecated; use `max_dim` instead.
#> Warning: `dim` parameter has been deprecated; use `max_dim` instead.
#> Warning: `dim` parameter has been deprecated; use `max_dim` instead.
#> Warning: `dim` parameter has been deprecated; use `max_dim` instead.
# null hypothesis tests
pl_z_test(circlescapes, toruscapes)
#>
#> z-test
#>
#> data:
#> z = 2.114, df = 10, p-value = 0.01726
#> alternative hypothesis: true difference in means is not equal to 0
#> 95 percent confidence interval:
#> 0.02727041 0.21848939
#> sample estimates:
#> mean of x mean of y
#> 0.14781005 0.02493015
#>
pl_perm_test(circlescapes, toruscapes)
#>
#> permutation test
#>
#> data:
#> p-value = 0.005
#> alternative hypothesis: true distance between mean landscapes is greater than 0
#> sample estimates:
#> distance between mean landscapes
#> 0.1639316
#>
if (FALSE) {
# benchmark one- and two-step computation of indicator-based linear form
bench::mark(
pl$indicator_form(f, 0, p = 1),
pl$indicator(f, 0)$integral(p = 1)
)
bench::mark(
pl$indicator_form(f, r = 1, p = 1),
pl$indicator(f, r = 1)$integral(p = 1)
)
}